Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
J Cancer Res Clin Oncol ; 149(8): 4391-4402, 2023 Jul.
Article En | MEDLINE | ID: mdl-36107247

PURPOSE: Advancements in photodynamic diagnosis (PDD) and photodynamic therapy (PDT) as a standard care in cancer therapy have been limited. This study is aimed to investigate the clinical availability of 5-aminolevulinic acid (5-ALA)-based PDD and PDT in glioblastoma (GBM) patient-derived tumorspheres (TSs) and mouse orthotopic xenograft model. METHODS: PDT was performed using a 635 nm light-emitting diode (LED). Transcriptome profiles were obtained from microarray data. For knockdown of C5α, siRNA was transfected into tumor mesenchymal stem-like cells (tMSLCs). The invasiveness of TSs was quantified using collagen-based 3D invasion assays. RESULTS: Treatment with 1 mM 5 ALA induced distinct protoporphyrin IX (PpIX) fluorescence in GBM TSs, but not in non-tumor cells or tissues, including tMSLCs. These observations were negatively correlated with the expression levels of FECH, which catalyzes the conversion of accumulated PpIX to heme. Furthermore, the 5-ALA-treated GBM TSs were sensitive to PDT, thereby significantly decreasing cell viability and invasiveness. Notably, the effects of PDT were abolished by culturing TSs with tMSLC-conditioned media. Transcriptome analysis revealed diverse tMSLC-secreted chemokines, including C5α, and their correlations with the expression of stemness- or mesenchymal transition-associated genes. By adding or inhibiting C5α, we confirmed that acquired resistance to PDT was induced via tMSLC-secreted C5α. CONCLUSIONS: Our results show substantial therapeutic effects of 5-ALA-based PDT on GBM TSs, suggesting C5α as a key molecule responsible for PDT resistance. These findings could trigger PDT as a standard clinical modality for the treatment of GBM.


Glioblastoma , Photochemotherapy , Humans , Animals , Mice , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Photochemotherapy/methods , Cell Line, Tumor , Protoporphyrins/pharmacology , Protoporphyrins/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
2.
Polymers (Basel) ; 14(10)2022 May 13.
Article En | MEDLINE | ID: mdl-35631892

We investigated the spectral property changes in anti-adhesion films, which were cross-linked and surface-modified through electron beam irradiation, using terahertz time-domain spectroscopy (THz-TDS). Polyethylene oxide (PEO), which is a biocompatible and biodegradable polymer, was the main component of these anti-adhesion films being manufactured for testing. The terahertz characteristics of the films were affected by the porosity generated during the freeze-drying and compression processes of sample preparation, and this was confirmed using optical coherence tomography (OCT) imaging. An anti-adhesion polymer film made without porosity was measured by using the THz-TDS method, and it was confirmed that the refractive index and absorption coefficient were dependent on the crosslinking state. To our knowledge, this is the first experiment on the feasibility of monitoring cross-linking states using terahertz waves. The THz-TDS method has potential as a useful nondestructive technique for polymer inspection and analysis.

3.
ACS Appl Mater Interfaces ; 12(45): 50703-50712, 2020 Nov 11.
Article En | MEDLINE | ID: mdl-33125230

A generic top-down approach for the preparation of extended arrays of high-aspect ratio GaAs nanowires (NWs) with different crystallographic orientations (i.e., [100] or [111]) and morphologies (i.e., porous, nonporous, tapered, or awl-like NWs) is reported. The method is based on the anodically induced chemical etching (AICE) of GaAs wafers in an oxidant-free aqueous HF solution at room temperature by using a patterned metal mesh and allows us to overcome the drawbacks of conventional metal-assisted chemical etching (MACE) processes. Local oxidative dissolution of GaAs in contact with a metal is achieved by externally injecting holes (h+) into the valence band (VB) of GaAs through the metal mesh. It is found that injection of holes (h+) through direct GaAs contact, rather than the metal mesh, does not yield uniform nanowires but porosify GaAs wafers due to the high cell potential. On the basis of experiments and numerical simulation for the spatial distribution of an electric field, a phenomenological model that explains the formation of GaAs NWs and their porosification behaviors is proposed. GaAs NWs exhibit excellent terahertz (THz) wave emission properties, which vary with either the length or the shape of the nanowires. By taking advantage of controlled porosification and easy transfer of GaAs NWs to foreign substrates, a flexible THz wave emitter is realized.

4.
Biomed Opt Express ; 9(4): 1582-1589, 2018 Apr 01.
Article En | MEDLINE | ID: mdl-29675303

We investigated the water contents in several organ tissues such as the liver, spleen, kidney, and brain tissue of rats using the terahertz spectroscopic imaging technique. The water contents of the tissues were determined by using a simple equation containing the absorption coefficients of fresh and lyophilized tissues and water. We compared the measured water contents with the difference in mass of tissues before and after lyophilization. All results showed a good match except for the kidney, which has several Bowman's capsules.

5.
Sci Rep ; 6: 36040, 2016 10 26.
Article En | MEDLINE | ID: mdl-27782153

Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes.


Glioma/diagnostic imaging , Neoplasms, Experimental/diagnostic imaging , Terahertz Imaging/methods , Animals , Glioma/metabolism , Glioma/pathology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology
6.
Biomed Opt Express ; 7(4): 1201-9, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-27446647

We designed and fabricated a novel terahertz (THz) otoscope to help physicians to diagnose otitis media (OM) with both THz diagnostics and conventional optical diagnostics. We verified the potential of this tool for diagnosing OM using mouse skin tissue and a human tympanic membrane samples prior to clinical application.

7.
Biomed Opt Express ; 6(4): 1398-406, 2015 Apr 01.
Article En | MEDLINE | ID: mdl-25909023

We have investigated the feasibility of THz time-domain reflectometry for the discrimination of human early gastric cancer (EGC) from the normal gastric region. Eight fresh EGC tissues, which were resected by endoscopic submucosal dissection, were studied. Of them, six lesions were well discriminated on THz images and the regions well correlated with tumor regions on pathologically mapped images. Four THz parameters could be suggested for quantitative discrimination of EGCs.

8.
Biomed Opt Express ; 5(8): 2837-42, 2014 Aug 01.
Article En | MEDLINE | ID: mdl-25136506

We demonstrated that tumors in freshly excised whole brain tissue could be differentiated clearly from normal brain tissue using a reflection-type terahertz (THz) imaging system. THz binary images of brain tissues with tumors indicated that the tumor boundaries in the THz images corresponded well to those in visible images. Grey and white-matter regions were distinguishable owing to the different distribution of myelin in the brain tissue. THz images corresponded closely with magnetic resonance imaging (MRI) results. The MRI and hematoxylin and eosin-stained microscopic images were investigated to account for the intensity differences in the THz images for fresh and paraffin-embedded brain tissue. Our results indicated that the THz signals corresponded to the cell density when water was removed. Thus, THz imaging could be used as a tool for label-free and real-time imaging of brain tumors, which would be helpful for physicians to determine tumor margins during brain surgery.

9.
Biomed Opt Express ; 5(12): 4162-70, 2014 Dec 01.
Article En | MEDLINE | ID: mdl-25574429

We have investigated basic properties of normal gastrointestinal (GI) tract tissues, including glandular stomach (GS), fore stomach (FS), large intestine (LI), small intestine (SI), and esophagus (ESO), from a rat model using terahertz (THz) reflection imaging and spectroscopy. The THz images collected from stratified squamous epithelia (SSE) of FS and ESO show a lower peak-to-peak value compared to those from columnar epithelia (CE) of GS, LI, or SI because the SSE contains less water than CE. The refractive index and absorption coefficient of FS were less than those of GS or LI, both having values similar to those of water. Additionally, we report internal reflection THz signals from ESO, although we were unable to determine the exact interface for this internal reflection.

10.
Opt Express ; 18(2): 1289-95, 2010 Jan 18.
Article En | MEDLINE | ID: mdl-20173954

This paper reports an experimental and simulation study of a tapered parallel-plate waveguide (TPPWG) to improve THz coupling to the plate separation gap. The flat- and round-type TPPWG without any silicon lens is compared to the parallel-plate waveguide (PPWG) with a plano-cylindrical silicon lens. The spectrum amplitudes of the input-side TPPWG and the input- and output-side TPPWG both having a 3 degrees slop angle increased about 56% and 103% at 1 THz when compared to that of the PPWG. Since the input- and output-side TPPWG had almost no impedance mismatch to the propagating THz wave, coupling to the waveguide could be improved twice compared with the PPWG.


Models, Theoretical , Optical Devices , Refractometry/instrumentation , Transducers , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Terahertz Radiation
11.
Opt Express ; 17(19): 17082-7, 2009 Sep 14.
Article En | MEDLINE | ID: mdl-19770926

In this study, we have designed, fabricated, and characterized a miniaturized optical fiber-coupled terahertz (THz) endoscope system. The endoscopic system utilized a photoconductive generator and detector driven by a mode-locked Ti:sapphire laser. In reflection mode, the endoscope showed a high signal-to-noise ratio and a wide frequency spectrum similar to the conventional THz time-domain spectroscopic system. The cross section of the endoscope including generator and detector head is (2 x 4 mm) x 6 mm, which is small enough to be inserted into a human body. For a feasibility test, the endoscopic system was used to measure reflective THz signals from the side wall of the mouth, tongue, and palm skin as well as from water for comparison. The absorption and refractive index of the side wall of the mouth and tongue were similar to those of water but those of the palm skin were less than water.


Endoscopes , Optical Fibers , Terahertz Spectroscopy/methods , Humans , Organ Specificity , Refractometry
12.
Opt Express ; 16(1): 271-8, 2008 Jan 07.
Article En | MEDLINE | ID: mdl-18521158

In this study, the coupling properties of a conical copper wire waveguide were investigated in the terahertz (THz) frequency range using theoretical simulations and experiments. Because a conical wire tip has a smaller tip diameter than a cylindrical wire tip, it has a greater THz field density than a cylindrical wire tip. The measured THz pulse increased 4.5 times upon contact with the 30 microm-diameter conical wire tip compared with the THz pulse when a 500 microm-diameter cylindrical wire tip was used. This result agrees well with that of theoretical simulations such as high-frequency structure simulation (HFSS), which is based on the finite element method.


Infrared Rays , Microwaves , Radiometry/instrumentation , Equipment Design , Equipment Failure Analysis , Radiation Dosage , Radiometry/methods
...